
Rekall: Specifying Video Events using Compositions of
Spatiotemporal Labels

Daniel Y. Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong,
Avanika Narayan, Maneesh Agrawala, Christopher Ré, Kayvon Fatahalian

Stanford University

{danfu, wcrichto, james.hong, xinwei.yao, haotianz, anhlt92, avanika, maneesh,
chrismre, kayvonf}@cs.stanford.edu

ABSTRACT
Many real-world video analysis applications require the ability to
identify domain-specific events in video, such as interviews and
commercials in TV news broadcasts, or action sequences in film.
Unfortunately, pre-trained models to detect all the events of interest
in video may not exist, and training new models from scratch can
be costly and labor-intensive. In this paper, we explore the utility
of specifying new events in video in a more traditional manner: by
writing queries that compose outputs of existing, pre-trained mod-
els. To write these queries, we have developed REKALL, a library
that exposes a data model and programming model for composi-
tional video event specification. REKALL represents video annota-
tions from different sources (object detectors, transcripts, etc.) as
spatiotemporal labels associated with continuous volumes of space-
time in a video, and provides operators for composing labels into
queries that model new video events. We demonstrate the use of
REKALL in analyzing video from cable TV news broadcasts, films,
static-camera vehicular video streams, and commercial autonomous
vehicle logs. In these efforts, domain experts were able to quickly
(in a few hours to a day) author queries that enabled the accurate
detection of new events (on par with, and in some cases much more
accurate than, learned approaches) and to rapidly retrieve video
clips for human-in-the-loop tasks such as video content curation
and training data curation. Finally, in a user study, novice users of
REKALL were able to author queries to retrieve new events in video
given just one hour of query development time.

1. INTRODUCTION
Modern machine learning techniques can robustly annotate large

video collections with basic information about their audiovisual
contents (e.g., face bounding boxes, people/object locations, time-
aligned transcripts). However, many real-world video applications
require exploring a more diverse set of events in video. For exam-
ple, our recent efforts to analyze cable TV news broadcasts required
models to detect interview segments and commercials. A film pro-
duction team may wish to quickly find common segments such as
action sequences to put into a movie trailer. An autonomous vehicle
development team may wish to mine video collections for events
like traffic light changes or obstructed left turns to debug the car’s
prediction and control systems. A machine learning engineer de-
veloping a new model for video analysis may search for particular
scenarios to bootstrap model development or focus labeler effort.

Unfortunately, pre-trained models to detect these domain-specific
events often do not exist, given the large number and diversity of
potential events of interest. Training models for new events can
be difficult and expensive, due to the large cost of labeling a train-
ing set from scratch, and the computation time and human skill

required to then train an accurate model. We seek to enable more
agile video analysis workflows where an analyst, faced with a video
dataset and an idea for a new event of interest (but only a small
number of labeled examples, if any), can quickly author an initial
model for the event, immediately inspect the model’s results, and
then iteratively refine the model to meet the accuracy needs of the
end task.

To enable these agile, human-in-the-loop video analysis work-
flows, we propose taking a more traditional approach: specifying
novel events in video as queries that programmatically compose
the outputs of existing, pre-trained models. Since heuristic com-
position does not require additional model training and is cheap to
evaluate, analysts can immediately inspect query results as they it-
eratively refine queries to overcome challenges such as modeling
complex event structure and dealing with imperfect source video
annotations (missed object detections, misaligned transcripts, etc.).

To explore the utility of a query-based approach for detecting
novel events of interest in video, we introduce REKALL, a library
that exposes a data model and programming model for composi-
tional video event specification. REKALL adapts ideas from multi-
media databases [4,15,23,31,32,36,40] to the modern video analy-
sis landscape, where using the outputs of modern machine learning
techniques allows for more powerful and expressive queries, and
adapts ideas from complex event processing systems for temporal
data streams [8, 16, 25] to the spatiotemporal domain of video.

The primary technical challenge in building REKALL was defin-
ing the appropriate abstractions and compositional primitives for
users to write queries over video. In order to compose video anno-
tations from multiple data sources that may be sampled at different
temporal resolutions (e.g., a car detection on a single frame from a
deep neural network, the duration of a word over half a second in
a transcript), REKALL’s data model adopts a unified representation
of multi-modal video annotations, the spatiotemporal label, that
is associated with a continuous volume of spacetime in a video.
REKALL’s programming model uses hierarchical composition of
these labels to express complex event structure and define increas-
ingly higher-level video events.

We demonstrate the effectiveness of compositional video event
specification by implementing REKALL queries for a range of video
analysis tasks drawn from four application domains: media bias
studies of cable TV news broadcasts, cinematography studies of
Hollywood films, analysis of static-camera vehicular video streams,
and data mining autonomous vehicle logs. In these efforts, REKALL
queries developed by domain experts with little prior REKALL ex-
perience achieved accuracies on par with, and sometimes signifi-
cantly better than, those of learning-based approaches (6.5 F1 points
more accurate on average, and up to 26.1 F1 points more accurate
for one task). REKALL queries also served as a key video data re-

1

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Figure 1: Overview of a compositional video event specification workflow. An analyst pre-processes a video collection to extract basic
annotations about its contents (e.g., face detections from an off-the-shelf deep neural network and audio-aligned transcripts). The analyst
then writes and iteratively refines REKALL queries that compose these annotations to specify new events of interest, until query outputs are
satisfactory for use by downstream analysis applications.

trieval component of human-in-the-loop exploratory video analysis
tasks.

Since our goal is to enable analysts to quickly retrieve novel
events in video, we also evaluate how well users are able to for-
mulate REKALL queries for new events in a user study. We taught
participants how to use REKALL with a one-hour tutorial, and then
gave them one hour to write a REKALL query to detect empty park-
ing spaces given the outputs of an off-the-shelf object detector.
Users with sufficient programming experience were able to write
REKALL queries to express complex spatiotemporal event struc-
tures; these queries, after some manual tuning (changing a single
line of code) by an expert REKALL user to account for failures in
the object detector, achieved near-perfect accuracies (average pre-
cision scores above 94).

To summarize, in this paper we make the following contribu-
tions:

• We propose compositional video event specification as a hu-
man-in-the-loop approach to rapidly detecting novel events
of interest in video.

• We introduce REKALL, a library that exposes a data model
and programming model for compositional video event spec-
ification by adapting ideas from multi-media databases and
complex event processing over temporal data streams to the
modern video analysis landscape.

• We demonstrate the effectiveness of REKALL through analy-
sis tasks across four application domains, where domain ex-
perts were able to quickly author REKALL queries to accu-
rately detect new events (on average 6.5 F1 points more ac-
curate, and up to 26.1 F1 points more accurate, than learned
approaches) and support human-in-the-loop video retrieval
workflows.

• We evaluate how well novice users of REKALL are able to de-
tect a novel event in video given a one-hour tutorial and one
hour of query development time (average precision scores
above 94 after tuning by an expert).

The rest of this paper is organized as follows: Section 2 intro-
duces an interview detection running example. Section 3 and 4
use the running example to introduce REKALL’s data model and
programming model. Section 5 introduces our application domains
and analysis tasks, and in Section 6 we evaluate the accuracy of
the REKALL queries used to solve these tasks and evaluate the
usability of REKALL for video event specification. Finally, we
conclude with related work and discussion in Sections 7 and 8.

Some supplemental videos can be found at http://www.danfu.
org/projects/rekall-tech-report/.

2. AN ANALYSIS EXAMPLE
To better understand the thought process underlying our video

analysis tasks, consider a situation where an analyst, seeking to un-
derstand sources of bias in TV political coverage, wishes to tab-
ulate the total time spent interviewing a political candidate in a
large collection of TV news video. Performing this analysis re-
quires identifying video segments that contain interviews of the
candidate. Since extracting TV news interviews is a unique task,
we assume a pre-trained computer vision model is not available to
the analyst. However, it is reasonable to expect an analyst does
have access to widely available tools for detecting and identifying
faces in the video, and to the video’s time-aligned text transcripts.

Common knowledge of TV news broadcasts suggests that inter-
view segments tend to feature shots containing faces of the candi-
date and the show’s host framed together, interleaved with head-
shots of just the candidate. Therefore, a first try at an interview
detector query might attempt to find segments featuring this tem-
poral pattern of face detections. Refinements to this initial query
might permit the desired pattern to contain brief periods where nei-
ther individual is on screen (e.g., display of B-roll footage for the
candidate to comment on), or require parts of the sequence to align
with utterences of the candidate’s name in the transcript or common
phrases like “welcome” and “thank for you being here.” As illus-
trated in Figure 1, arriving at an accurate query for a dataset often
requires multiple iterations of the analyst reviewing query results
and adding additional heuristics as necessary until a desired level
of accuracy is achieved.

Even in this simple example, a number of challenges emerge.
Annotations used as query inputs may be of different modalities
and sampled at different temporal rates (e.g., face detections are
computed per frame, transcript text is sub-second aligned). Queries
must be robust to noise in source annotations (e.g., missed face de-
tections, partially misaligned transcript data). Lastly, to be suffi-
ciently expressive to describe a range of events, the system must
provide a rich set of composition operators to describe temporal
and (although not required in this example) spatial relationships
between annotations.

The following sections describe REKALL’s data model – its rep-
resentation of multi-modal video annotation inputs – and its pro-
gramming model, the operations available to queries for defining
new video events in terms of these inputs.

2

http://www.danfu.org/projects/rekall-tech-report/
http://www.danfu.org/projects/rekall-tech-report/

Contiguous Face:
 name = Tapper
 gender = male

Contiguous Face:
 name = Sanders
 gender = male

And
Joining

Me
Now...

Segment: Contains “And Joining Me Now”

x

y t

Face Detection
Bounding Box
on a Frame

Face Detection
Bounding Box
on a Frame

Figure 2: REKALL represents all video annotations, both basic annotations from computer vision models and annotations of more complex
events, as labels associated with spatiotemporal intervals in the domain of a video. REKALL’s labels can be nested. We illustrate two labels
representing video segments where a face is continuously on screen (red) that contain labels corresponding to per-frame face detections
(blue), and one caption segment (green) that contains labels for individual words (orange).

3. SPATIOTEMPORAL LABELS
To facilitate queries that combine information from a video sam-

pled at different rates and originating from different source modal-
ities, REKALL adopts a unified representation for all data: a spa-
tiotemporal label (or label). Similar to how temporal databases as-
sociate records with an interval of time designating their insertion
to and deletion from the database [26], each REKALL label is as-
sociated with a continuous, axis-aligned interval of spacetime that
locates the label in a video (a label is the equivalent of a database
record in REKALL’s data model). For example, a face detected in a
frame two minutes and ten seconds into a 30 fps video with bound-
ing box co-ordinates {x1: 0.2, x2: 0.4, y1: 0.2, y2: 0.8} (relative to
the size of the frame) yields a label whose interval spans this box
in space and the range {t1: 2:10.0, t2: 2:10.333} in time. REKALL
labels also optionally include metadata. For example, a face detec-
tion label might include the name of the detected individual:

face = Label(
Interval=(t1: 2:10.0, t2: 2:10.333,

x1: 0.2, x2: 0.4,
y1: 0.2, y2: 0.8),

Metadata={ identity: Bernie Sanders }
)

Figure 2 illustrates examples of labels generated for the TV news
interview task introduced in Section 2. Face detection performed
on each frame yields labels (one per detected face, blue boxes) that
span one frame of time (with the name of the individual as meta-
data). The results of time-aligning the video’s transcript yields a
label per word that extends for the length of the utterence (with the
word as metadata, yellow boxes). Although words in a transcript
are inherently temporal (and not spatial), they can be lifted to the
full spatiotemporal domain by assigning them the entire space of
the frame. Most examples in this paper use a 3D (X,Y,T) video
domain, although REKALL also supports intervals with additional
spatial dimensions (e.g., labels in a LIDAR point cloud video exist
in a 4D domain).

To echo the hierarchical nature of information derived from a
video, labels in REKALL queries can be hierarchical (a label’s meta-
data can be a list of labels.) For example, a set of temporally con-
tinuous face detections of the same individual at the same loca-
tion on screen might be grouped into a single label representing a
segment where the individual is on screen. The red boxes in Fig-
ure 2 indicate segments where anchor Jack Tapper or guest Bernie
Sanders are on screen. The figure also shows a label correspond-
ing to the phrase “And joining me now” that contains labels for the

constituent words (green box). Many of the queries described in
the subsequent sections construct multi-level hierarchies of labels.
For example, in TV and film videos, frames can be organized into
shots, and shots can be grouped into scenes (or news segments).

4. COMPOSING LABELS
REKALL queries define how to compose existing labels into new

labels that correspond to instances of new events in a video. In this
section we describe the label composition primitives available to
REKALL queries. To aid description, Figure 3 provides code for
the TV news interview detection task from Section 2, which will
be used as the running example throughout this section.

4.1 Label Sets
REKALL uses sets of labels to represent all occurrences of an

event in a video (a label set is equivalent to a database relation).
A REKALL query consists of operations that produce and consume
sets of labels (all REKALL operations are closed on sets of labels).
For example, Line 1 of Figure 3 constructs an initial label set from
a database table containing all face detections from a video. The
variable faces is a set containing one label for each detected face.
The result of the query is the set interviews, which contains one
label corresponding to each interview segment in the video.

REKALL provides standard data-parallel operations map, filter,
and group_by to manipulate label sets. For example, lines 3 and
11 filter faces according to the person’s name (pre-computed us-
ing off-the-shelf identity recognition tools [1] and stored as label
metadata) to produce label sets containing only detections of Jake
Tapper (tapper) and Bernie Sanders (sanders).

Figure 4 illustrates the behavior of various REKALL label set
operations. map can be used to manipulate the metadata or the spa-
tiotemporal interval associated with labels (e.g., shrink the interval
as shown in the figure). group_by is one mechanism by which
REKALL queries construct nested labels. For example, Figure 4,
bottom-left shows the use of group_by to reorganize a set of four
face detection labels into a set of two labels that each contain a set
of labels corresponding to faces in the same frame.

4.2 Coalesce: Recursive Label Merging
Many video analysis tasks involve reasoning about sequences of

labels or about spatially adjacent labels. For example, in the TV in-
terviews query, it is preferable to reason about continuous segments
of time where a person is on screen (“a segment containing Bernie

3

faces = rekall.ingest(database.table(“faces”), 3D)

sanders = faces
 .filter(λ face: face.name == “Bernie Sanders”)

sanders_segs = sanders
 .coalesce(
 predicate = time_gap < 30 seconds,
 merge = time_span)

tapper = faces
 .filter(λ face: face.name == “Jake Tapper”)

tapper_segs = tapper
 .coalesce(
 predicate = time_gap < 30 seconds,
 merge = time_span)

sanders_and_tapper_segs = sanders_segs
 .join(
 tapper_segs,
 predicate = time_overlaps,
 merge = time_intersection)

sanders_alone_segs = sanders_segs
 .minus(sanders_and_tapper_segs)

interview_segs = sanders_and_tapper_segs
 .join(
 sanders_alone_segs,
 predicate = before or after,
 merge = time_span)

interviews = interview_segs.coalesce()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Time

Face Detections Bernie Sanders Detections Jake Tapper Detections Bernie Sanders and Jake Tapper Interviews

Figure 3: Left: A REKALL query for detecting interviews of Bernie Sanders by Jack Tapper. Right: A visual depiction of the intermediate
label sets produced over the course of execution. Blue: face detections; Orange: Bernie Sanders; Red: Jake Tapper; Orange and Red: Bernie
Sanders and Jake Tapper; Green: interview segments.

Sanders on screen, followed by one with Jake Tapper”), rather than
individual frame face detections.

REKALL’s coalesce operator serves to merge an unbounded
number of fine-grained labels in close proximity in time or space
into new labels that correspond to higher-level concepts. coalesce
is parameterized by a query-specified label merge predicate, which
determines whether a pair of labels should be merged, and a label
merge function that specifies how to create a new label as a result
of a merge. coalesce recursively merges labels in its input set (us-
ing the merge function), until no further merges are possible (as
determined by the merge predicate).

Lines 6 and 14 in Figure 3 demonstrate use of coalesce to merge
label sets of per-frame face detections into label sets correspond-
ing to sequences of time when Bernie Sanders and Jake Tapper are
on screen. In this example, the query uses a merge predicate that
merges all input labels that lie within 30 seconds of each other (not
just temporally adjacent labels) and the merge function combines

the two labels to create a new label whose spatiotemporal interval
spans the union of the intervals of the two inputs. As a result, the
resulting labels, which correspond to video segments showing the
interviewer or interviewee on screen, may contain brief cuts away
from the individual.

coalesce serves a similar role as “repeat” operators in prior mul-
timedia database systems [4, 15, 23, 31, 32, 36, 40], or as a regex
Kleene-star operator on point events in event processing systems
[8, 16]. However, it is a general mechanism that provides queries
the flexibility to build increasingly higher levels of abstraction in
custom ways. For example, it is common to use coalesce with a
spatiotemporal proximity predicate to build labels that correspond
to “tracks” of an object (Figure 4, bottom-center) or to smooth over
noise in fine-grained labels (e.g., flicker in an object detector). We
document a variety of use cases of coalesce in Section 5.

4

Operations on Label Sets

a.map(f)

a

a.filter(f)

a.group_by(f,
 time_span)

a.coalesce(
 time_ovrlp,
 time_span)

a

b

a.join(b,
 time_ovrlp,
 time_isect)

a.minus(b)

Common Spatiotemporal Patterns

Group Labels with the Same Time Interval Coalesce with Spatial Predicate: Tracking Join with Spatiotemporal Predicate: Bicyclists

person

bicycle

bicyclists

a.join(b,
 before,
 time_span)

f()
f()

f() f()

f()
f()

f() f()

f()
f()

f() f()

A AB
B

Figure 4: Semantics of REKALL operations on label sets. The functions shown are a sample of REKALL’s complete library of operators,
intended to provide visual intuition for how a few relevant operators work. Top half: label set operations, depicted on sets of one-dimensional
temporal labels. Bottom half: depictions of common spatiotemporal operations on multi-dimensional labels.

4.3 Joins
Video analysis tasks often involve reasoning about multiple con-

current label streams; REKALL provides standard join operators to
combine multiple streams together and construct new labels from
spatiotemporal relationships between existing labels. REKALL’s
inner join is parameterized by a join predicate and a label merge
function that specifies how to merge matching pairs of labels (like
coalesce). For example, line 19 in Figure 3 uses join with a tem-
poral overlap predicate (time_overlaps) and a temporal intersec-
tion merge function (time_intersection) to generate a label set
(sanders_and_tapper_segs) corresponding to times when both
Sanders and Tapper are on screen. Line 28 in the pseudocode uses
a different join predicate (before or after) and merge function
(time_span) to construct labels for segments where Sanders is on
screen directly before or directly after a segment containing both
Sanders and Tapper.

As shown at right in Figure 4, REKALL provides a standard li-
brary of common spatial and temporal predicates such as the Allen
interval operations [5] and their 2D spatial analogues [9]. The
bottom-right of the Figure illustrates the use of a join with a pred-
icate (“above”) to construct labels for bicyclists from label sets of
bicycle and person detections.

REKALL’s minus operation is an anti-semi-join (similar to Trill’s
WhereNotExists [8]) that takes two label sets and removes inter-
vals associated with labels in the second set from the intervals of
labels in the first. For example, Line 10 in Figure 3 uses minus
to construct labels for segments when Bernie Sanders is on screen
alone. Like join, minus is parameterized by a predicate that de-
termines which labels are matched by the operation. The empty
parking space detection query shown in Figure 7 illustrates the

use of minus with a spatiotemporal predicate that only matches la-
bels when their interval intersection to union ratio (IOU) exceeds a
manually-set threshold.

5. APPLICATIONS
We have used REKALL to write queries needed for video analy-

sis tasks in several domains: media bias studies of TV news broad-
casts, analysis of cinematography trends in feature length films,
event detection in static-camera vehicular video streams, and data
mining the contents of autonomous vehicle logs. In many cases,
these queries have been used to automatically label large video
collections for statistical analysis; in other cases, REKALL queries
have also proven to be a valuable mechanism for retrieving video
clips of interest in scenarios that involve human-in-the-loop analy-
sis tasks.

The remainder of this section provides further detail on how
REKALL’s programming model was used to author queries used in
these application domains. Table 1 enumerates several tasks from
REKALL’s deployments, and includes the basic annotations used as
input to REKALL queries that perform these tasks. Code listings for
SHOT SCALE and PARKING are provided in this section, and code
listings for additional queries are provided in the Appendix.

5.1 Analysis of Cable TV News Media
We have used REKALL queries as part of an ongoing study of

representation and bias in over 200,000 hours of U.S. cable TV
news (CNN, MSNBC, FOX) between 2010 and 2018. This effort
seeks to analyze differences in screen time afforded to individuals
of different demographic groups, and asks questions such as “Did
Donald Trump or Hillary Clinton get more interview screen time in

5

Task Application(s) Data Sources Description

Commercial Detection (COMMERCIAL) TV News Histograms, transcripts Detect all commercial segments
Interview Detection (INTERVIEW) TV News Face detections Detect all interviews with a particular guest

(e.g., Bernie Sanders)
Shot Transition Detection (SHOT DETECT) Film Histograms, face detections Detect every shot transition
Shot Scale Classification (SHOT SCALE) Film Face detections, pose estimations Classify the scale of each shot
Conversation Detection (CONVERSATION) Film Face detections, face embeddings Detect all conversations
Film Idiom Mining (FILM IDIOM) Film Face detections, transcripts, Detect various film idioms – reaction shots,

histograms action sequences, establishing shots, etc.
Empty Parking Space Detection (PARKING) Static-Camera Feeds Object detections Detect all empty parking spots
AV Log Mining (AV) AV Object detections from cameras, Detect various rare events from autonomous

LIDAR vehicle logs
Upstream Model Debugging (DEBUGGING) TV News, Film, AV, Model outputs Detect errors in model outputs

Static-Camera Feeds

Table 1: Nine representative tasks from REKALL deployments for analysis of a large collection of cable TV News, cinematographic studies
of Hollywood films, analysis of static-camera vehicular video feeds, and data mining commercial autonomous vehicle logs.

the months before the 2016 election?” or “How much more screen
time is given to male presenting vs. female presenting hosts?”
To answer these questions, screen time aggregations needed to be
scoped to specific video contexts, such as interview segments, and
needed to exclude commercials. Thus, a key challenge involved
developing queries for accurately detecting commercial segments
(COMMERCIAL) and segments featuring interviews with specific
political candidates (INTERVIEW).

A simplified version of the interview detection algorithm was
described in Section 4; in practice, we extend the algorithm to
find interviews between any individual known to be a cable TV
news host and a specified guest (we used Jake Tapper for exposi-
tional simplicity; modifying the query in Figure 3 to find candidate
interviews with any host is a one-line change). In the TV news
dataset, commercial segments often begin and end with short se-
quences of black frames and often have mixed-case or missing tran-
scripts (news broadcasts typically feature upper-case caption text).
The COMMERCIAL query exploits these dataset-specific signals to
identify commercial segments. More details can be found in the
Appendix.

5.2 Film Cinematography Studies
We have analyzed a collection of 589 feature-length films span-

ning 1915-2016 to explore questions about cinematographic tech-
niques, and how their use has changed over time (e.g., “How has
the pace or framing of films changed over the past century?”, or
“How much screen time do conversations take in films?” [7, 10–
14]). Representative queries are depicted in Figure 5, and include
shot transition detection (SHOT DETECT, partitioning a video into
segments of continuously recorded footage), classifying shots by
the relative size of the actors to the size of the frame (SHOT SCALE),
and conversation detection (CONVERSATION). Our film analy-
ses also required queries for retrieving segments exhibiting com-
mon film cinematography idioms such as action sequences or wide-
angle scene “establishing shots” for video clip content curation
(FILM IDIOM).

As one example of a query used in this effort, Figure 6 provides
code for SHOT SCALE, which classifies each shot in a video as
“long”, “medium”, or “close up” based on the size of actors on
screen. Inputs to this query include a label set for all film shots
(shots), as well as label sets for per-frame face detections faces
and actor body poses (poses). Each shot contains multiple frames,
each of which contains zero or more actors. The challenge of this
query is to use the relative sizes of each actor in a frame to estimate
the scale for the frame, and then use per-frame scale estimates to es-
timate the scale of the shot. The REKALL query echoes this nested

structure using hierarchical labels to estimate the scale of a shot.
The query first estimates the scale based on each face detection

or pose detection in a frame. Lines 10 and 12 estimate the scale
based on the relative size of face bounding boxes or pose skeletons,
using frame_scale_face or frame_scale_pose, respectively. The
query then aggregates these estimates into a single label set for
each frame, retaining the largest estimate (take_largest) from all
detected faces and poses (lines 15-18). Finally, the query identi-
fies the frames contained within each shot and classifies the shot’s
scale as the mode of the scales computed for each constituent frame
(lines 20-26).

We provide details about the other cinematography queries in the
Appendix. These queries use rapid changes in video frame pixel
color histograms and face bounding box locations to detect shot
boundaries, identify patterns of shots where the same two individ-
uals appear over an extended period of time as a signal for conver-
sations, and use patterns in length or scale of consecutive shots to
identify common film idioms.

Human-in-the-loop Movie Data Exploration. In addition to
conducting film analyses, we have also used REKALL queries as
a tool for exploring films and curating content needed for video
editing tasks like making video supercuts or movie trailers [6, 54].
These video editing tasks require finding clips in a film that embody
common film idioms such as action shots, “hero shots” of the main
characters, or wide-angle establishing shots.

We authored REKALL queries for several different types of film
idioms, and provided query results to a video editor who selected
final clips to use in the movie trailer. Query recall in this task was
more important than precision, since the editor could quickly re-
sult sets to select a small number of desirable clips. We demon-
strated this workflow on Star Wars: Episode III - Revenge of the
Sith. Once queries were written, the entire mining and trailer con-
struction process took less than four hours. The full list of film
idioms we mined for this effort can be found in the Appendix.
The movie trailer, a selection of supercuts, and examples of other
film idioms can be found at http://www.danfu.org/projects/
rekall-tech-report/.

5.3 Static-Camera Vehicular Video Streams
Inspired by recent vision applications in the wild [19], PARKING

detects the time periods where parking spots are free in a fixed-
camera video feed of a parking lot. The query, whose code is given
in Figure 7, uses only labels produced by an off-the-shelf object de-
tector run on the video stream, and is based on two simple heuris-
tics: a parking spot is a spatial location where a car is stationary for
a long period of time, and an empty parking spot is a parking spot

6

http://www.danfu.org/projects/rekall-tech-report/
http://www.danfu.org/projects/rekall-tech-report/

Film Idiom Mining

Establishing Shots Shot Transitions

Action Sequences

Fear of loss is a path
to the dark side...

I won’t let these dreams
come true, Master...

Conversations

Obi-Wan: The Chancellor is
behind everything...

Reaction Shots

Figure 5: Examples of film idioms extracted from Star Wars: Episode III - Revenge of the Sith using REKALL queries.

Long Medium Close Up

Shot Scale Classi�cation

1 faces = rekall.ingest(database.table("faces"), 3D)
2 poses = rekall.ingest(database.table("poses"), 3D)
3 shots = rekall.ingest(database.table("shots"), 1D)
4

5 faces_per_frame = faces
6 .group_by(λ obj: (obj["t1"], obj["t2"]), span)
7 poses_per_frame = poses
8 .group_by(λ obj: (obj["t1"], obj["t2"]), span)
9

10 frame_scales_face = faces_per_frame
11 .map(frame_scale_face)
12 frame_scales_pose = poses_per_frame
13 .map(frame_scale_pose)
14

15 frame_scales = frame_scales_face
16 .union(frame_scales_pose)
17 .group_by(λ frame: (frame["t1"], frame["t2"]), span)
18 .map(λ frame: take_largest(frame.nested))
19

20 shot_scales = frame_scales
21 .join(
22 shots,
23 predicate = time_overlaps,
24 merge = time_span)
25 .group_by(λ shot: (shot["t1"], shot["t2"]), span)
26 .map(λ shot: mode(shot.nested))

Figure 6: A query for classifing the scale of a cinematic shot (as
long, medium, or close up) based on the size of faces and human
pose estimates detected in frames. The query uses nested labels
to group per-detection estimates of scale by frame, then pools per-
frame results by shot to arrive at a final estimate.

without a car in it.
For simplicity, the query in Figure 7 assumes that all parking

spaces are taken at the start of the video (this assumption can be re-
laxed by extending the query to identify regions that are occupied
by cars for a significant period of time at any point in the video).
The query extends the car detections at the start of the video to the
entire video to construct a label set of parking spots (lines 3-5), and
then subtracts out car and truck detections (lines 7-12). The pred-
icate iou (intersection-over-union) provided to the minus operator
ensures that the operation only removes times when the parking
spot is completely filled (and not when vehicles partially overlap in
pixel space when passing by). The behavior of the spatiotemporal

Empty Parking Space Detection

1 objects = rekall.ingest(database.table("objects"), 3D)
2

3 parking_spots = objects
4 .filter(λ obj: obj["t1"] == 0 and obj.class == "car")
5 .map(λ spot: spot with "t1" = 0 and "t2" = video_end)
6

7 vehicles = objects
8 .filter(λ obj: obj.class in ["car", "truck"])
9

10 empty_spot_candidates = parking_spots
11 .minus(vehicles,
12 predicate = λ spot, car: iou(spot, car) > 0.25)
13

14 empty_parking_spots = empty_spot_candidates
15 .coalesce(
16 predicate = λ spot, car: iou(spot, car) == 1,
17 merge = span)
18 .filter(λ spot: spot["t2"] - spot["t1"] > 60 * 4)

parking_spots

vehicles

parking_spots
 .minus(
 vehicles,
 iou > 0.25)

Figure 7: A query for detecting empty parking spaces using only
object detection results in a fixed-camera feed. Potentially empty
spots are obtained by subtracting the current frame’s car intervals
(red) from a set of intervals corresponding to all spots (orange). To
account for errors in an object detector, a parking spot must be car
free for a continuous period of time (4 minutes) to be counted as a
“free spot”.

minus operation, and the surviving labels that correspond to empty
parking spots (green intervals), is illustrated at the bottom of Fig-

7

ure 7. Finally, to avoid errors due to missed object detections, the
query uses coalesce to construct consecutive empty spot detec-
tions, and removes detections that exist for less than four minutes
(lines 14-18).

5.4 Mining Autonomous Vehicle Logs
REKALL queries are used at a major autonomous vehicle com-

pany to mine for rare, but potentially important, events in autonomous
vehicle logs (AV). Queries are used to identify traffic light changes
in quick succession, as well as turns by other vehicles near the
autonomous vehicle. Images from the traffic light sequences are
sent to human labelers for ground truth annotation, which may re-
veal correct detector behavior (a sequence of green-to-yellow-to-
red transitions), major failures of the traffic light color detector
(thus creating new labeled supervision for an active learning loop),
or important rare situations to document such as a yellow flashing
warning light. Images from vehicle turn sequences, on the other
hand, are sent to labelers to label turn signals, and to validate the
car’s prediction and control systems. As in the video editing case,
since clips matching these queries are subsequently passed on to
human labelers for review, REKALL queries serve as a filter that
focuses human effort on examples that are most likely to be impor-
tant.

Face Detection “Model Flickering”

Result for “Frames with at least two women”
Upstream Model Debugging

Figure 8: Two examples using REKALL queries to debug computer
vision models during our film cinematography studies. Top: Face
detections “flickering” in and out of existence for a single frame at
a time. Here, the face detector fails to detect Han Solo’s face in the
middle frame, even though his face appears in the same location
and the same place in the surrounding two frames. Bottom: The
result of a query for frames with two women based on the results of
an off-the-shelf gender classifier. Gender balance is so poor in fan-
tasy movies that most of these examples are false positives. Male
classifications are shown in blue; female classifications are shown
in red. Harry Potter, Han Solo, Merry and Pippin have all been
misclassified.

5.5 Model Debugging
In all the projects using REKALL, queries have been used to iden-

tify errors in the output of pre-trained models. A common example
is shown in Figure 8, where a REKALL query is used to detect false
negatives in a face detector from a lack of temporal coherence in its
output (Han Solo’s face is not detected in the middle frame). Once
users identify such errors, they often use coalesce to smooth over
the errors to improve end results (PARKING smooths over errors in
the object detector, for example, increasing accuracy by 19.8 AP
points over a version of the query that does not). The coalesce
operations in the INTERVIEW algorithm and aggregation steps in
the SHOT SCALE algorithm played similar roles in those queries.

During our film study efforts, a query for detecting frames with
at least two woman faces surfaced errors in the gender classifier,
since scenes with multiple women in Hollywood films are rare due

to a bad gender imbalance. Most scenes retrieved by the query
were false positives due to incorrect gender classification of faces.
As a result, we subsequently replaced the face gender classifier
with a better model. We note that our efforts searching for po-
tentially anomalous patterns in trained model output is similar to
recent work on improving models using model assertions [29].

6. EVALUATION
The goal of REKALL is to enable analysts to productively au-

thor queries that meet the requirements of a range of video analysis
tasks. In this section, we evaluate REKALL in terms of the accuracy
of the queries compared to learned approaches and the usability of
REKALL by domain experts and novice users.

• In Section 6.1, we evaluate our ability to author high-accuracy
REKALL queries by comparing query output to that of learned
baselines (deep models trained on the same video data avail-
able to the programmer during query development). In five
out of six representative tasks, REKALL queries were on par
with, and in some cases significantly more accurate than,
these learned baselines (6.5 F1 points more accurate on aver-
age across all tasks, and up to 26.1 F1 points more accurate
in one case).

• Since developing a program that detects an event of inter-
est in a video is more challenging than directly labeling in-
stances of that event, we discuss the experiences of task do-
main experts authoring REKALL queries for real-world video
analysis applications (Section 6.2).

• Finally, in a user study, we also evaluate how well novice
REKALL users are able to author REKALL queries for a new
detection task in one hour. Users with a sufficient functional
programming background were able to author queries that
achieved average precision (AP) scores above 94 after one-
line tweaks by an expert user to account for errors in up-
stream object detectors.

6.1 Query Accuracy
We evaluate the accuracy of our REKALL queries by comparing

query outputs to baseline learning-based approaches on six repre-
sentative tasks for which high accuracy was required. For each
task, we collect human-annotated ground truth labels, splitting la-
beled video into a development set that was made available to the
REKALL programmer during query development, and a held-out
test set used for evaluating the accuracy of REKALL queries and
trained models. We train learning baselines using all human labels
contained in the development set.

6.1.1 Classification Tasks
Five tasks (INTERVIEW, COMMERCIAL, CONVERSATION, SHOT

DETECT, and SHOT SCALE) can be viewed as classification tasks.
For these tasks, we compare REKALL query accuracy (F1 score)
against those of image classification and action recognition net-
works trained on the development set (results in Table 2-top). These
models classify whether a video frame or a short video segment (for
the action recognition baseline) contains the event of interest (in-
terview, commercial, etc.). For the learned baselines, we report the
average F1 score and standard deviation over five random weight
initializations.

Setup. For the image classification baseline (ResNet-50 Image
Classification column in Table 2), we use a transfer learning ap-
proach [3] to fine-tune a ResNet-50 image classifier [50] (pre-
trained on ImageNet) for each task. We also report the perfor-
mance of this model after temporal “smoothing”: taking the mode

8

Method

Task ResNet-50 Image Classification ResNet-50 Image Classification + Smoothing Conv3D Action Recognition REKALL

INTERVIEW 80.0 ± 3.4 87.3 ± 2.4 17.7 ± 18.3 95.5
COMMERCIAL 90.9 ± 1.0 90.0 ± 0.9 88.6 ± 0.4 94.9

CONVERSATION 65.2 ± 3.5 66.1 ± 3.5 79.4 ± 2.3 71.8
SHOT DETECT – – 83.2 ± 1.0 84.1

SHOT SCALE 67.3 ± 1.0 68.1 ± 1.2 70.1 ± 0.8 96.2

Faster R-CNN Object Detection REKALL

PARKING 98.6 ± 0.9 – – 98.0

Table 2: We validate the accuracy of REKALL queries against learned baselines. For classification tasks (top five rows) we train image
classification networks (with and without temporal smoothing) and a temporal action recognition network as baselines and report F1 scores.
We cast PARKING as an object detection task and report average precision (AP) against a Faster R-CNN baseline. For all learned baselines,
we report average scores and standard deviations over five random weight initializations.

of model predictions over a window of seven frames (ResNet-50
Image Classification + Smoothing). Since SHOT DETECT fun-
damentally requires information from multiple frames to detect a
shot change, we did not run the ResNet-50 baselines for this task.
For the action recognition baseline (Conv3D Action Recognition
column), we fine-tune a ResNet34-based 3D CNN (pre-trained on
the Kinetics action recognition dataset) for each task [20]. This
network produces a single classification result given video seg-
ments of 16 frames. We chose these methods to represent a breadth
of “reasonable-effort” learning approaches to these classification
problems, with a range of temporal information available to the
networks (the image classification baseline can only see a single
image, whereas the smoothing aggregates signal from a small win-
dow, and the action recognition baseline is directly fed a larger win-
dow of frames).

Details of the experimental setup for each classification task are
given below.

INTERVIEW: We limit the task to detecting interviews with Bernie
Sanders (and any host). We annotated 54 hours of TV news broad-
casts, split into a development set of 25 hours, and a test set of 29
hours. Interviews with Sanders are rare; the development set con-
tains 40 minutes of Sanders interviews, and the test set contains 52
minutes.

COMMERCIAL: We annotated commercials in 46 hours of TV
news broadcasts, and partitioned this video into a development set
of 26 hours (7.5 hours of commercials), and a test set of 20 hours
(6.3 hours of commercials).

CONVERSATION: We annotated conversations in 45 minutes of
video selected from four films as a development set (29 minutes of
conversations), and annotated all conversations in a fifth film (87
minutes of footage, 53 minutes of conversations) as a test set.

SHOT DETECT: We annotated shot boundaries in 45 minutes of
video clips randomly selected from 23 movies, which we split in
half into a development set with 348 shot transitions and a test set
with 303 shot transitions.

SHOT SCALE: We annotated 898 shots generated by the SHOT
DETECT query with scale annotations (293 long shots, 294 medium
shots, and 311 close up shots). We split these in half into a devel-
opment set and a test set.

Results. REKALL queries yielded a higher F1 score than the best
learned model in four of the five classification tasks (6.5 F1 points
greater on average across all five tasks). The largest difference in
accuracy was for SHOT SCALE, where the REKALL query was 26.1
F1 points higher than the best learned approach.

The performance of different learned approaches varied widely
by task; smoothing drastically improved the accuracy of the image
classification model for INTERVIEW, but much less so for CON-

VERSATION and SHOT SCALE, and decreased the accuracy for
COMMERCIAL. The action recognition baseline was the most accu-
rate learning approach for both CONVERSATION and SHOT SCALE,
but was less accurate than the image classification approaches for
COMMERCIAL and 77.8 F1 points lower than the REKALL query
for INTERVIEW.

The learned baselines in Table 2 were chosen as reasonable-
effort solutions that follow common practice. It is likely that a
machine learning expert, given sufficient time, could achieve bet-
ter results. However, two of the tasks, COMMERCIAL and SHOT
DETECT, are well-studied and have existing industrial or academic
solutions. We compared our REKALL commercial detector against
that of MythTV [2], an open-source DVR system. The MythTV
detector achieved an F1 score of 81.5 on our test set, 14.0 F1 points
worse than the REKALL query.

For SHOT DETECT, we compared against an open source im-
plementation of the DeepSBD shot detector [21], trained on the
large ClipShots dataset [57]. The DeepSBD shot detection model
achieved an F1 score of 91.4, more accurate than our REKALL
query.

However, by using the REKALL query’s output on our entire 589
movie dataset as a source of weak supervision [45–47], we are able
to train a model that achieved an F1 score of 91.3, matching the per-
formance of the DeepSBD model. By using an imperfect REKALL
query as a source of weak supervision on a large, unlabeled video
database, we were able to train a model that matches the perfor-
mance of a state-of-the-art method using 636× less ground truth
data. For more details on this approach, see the Appendix.

6.1.2 Object Detection Tasks
In PARKING we are interested both in detecting when there is

an open parking spot, and where the open parking spot is in the
frame. Therefore, we cast it was an object detection problem; given
an image of a parking lot, detect all the empty parking spots. We
gathered two hours of parking lot footage, annotated all the empty
parking spots, and split it into a development and test set. We fine-
tuned the Faster R-CNN model with ResNet-50 backbone [38, 48]
(pre-trained on MS-COCO [37]) on the development set. The bot-
tom row of Table 2 reports average precision (AP) for PARKING.
Both the learned baseline and the REKALL query are near-perfect,
achieving over 98.0 AP on this task.

6.1.3 Query Performance
Evaluation of deep neural network models often dominates the

cost of video analysis, so many recent video analysis systems fo-
cus on accelerating (or avoiding) model execution [27, 28, 42]. In
our application tasks, since the labels were pre-computed, REKALL

9

AP Scores

User ID FP Experience Original Modified

1 5 78.2 98.7
2 4 75.0 98.7
3 3 74.2 98.0
4 3 66.5 95.5
5 3 65.9 94.2
6 2 66.5 95.5
7 1 26.5 95.5
8 1 0.0 0.0

Table 3: Results of a user study with novice users on the PARK-
ING task. Participants were trained to use REKALL for one hour
and then were given one hour to develop REKALL programs for the
PARKING task. The Original column reports the average precision
of their resulting programs. These scores were confounded by class
confusion in the off-the-shelf object detector; scores after modifi-
cation to account for this confusion (one LOC change for users 1-6,
3 LOC for user 7) are shown in the Modified column. Self-reported
scores for familiarity with functional programming are shown in
the FP Experience column.

queries were able to run over the development sets quickly enough
to enable iterative query development (even though the REKALL
implementation contains minimal optimization). Final queries for
all tasks ran in less than thirty seconds on the development sets.
The REKALL implementation stands to gain from further optimiza-
tion, but even naive implementations of the composition functions
were sufficient to provide interactive feedback to enable productive
query development. Since initial model evaluation is the primary
computational cost, future versions of REKALL might employ the
various optimizations explored in video analysis systems from the
literature to reduce the initial cost of pre-computing labels (or use
query structure to guide cascades of model evaluation).

6.2 Usability
REKALL programs have been authored by students in two uni-

versity research labs and at one company. Our experiences suggest
that many programmers can successfully translate high-level video
analysis tasks into queries.

For example, four of the representative tasks reported in Sec-
tion 5 (COMMERCIAL, CONVERSATION, SHOT SCALE, FILM ID-
IOM) were solved by domain experts who had no previous experi-
ence using REKALL. (Note: These users are now associated with
the project and are co-authors of this paper.) These programming
efforts ranged from an afternoon to two days (time to learn how to
use REKALL), and included overcoming common query program-
ming challenges such as dealing with noise in source annotations
or misaligned transcript data.

These anecdotal experiences were promising, but the domain ex-
perts often developed REKALL queries in close collaboration with
REKALL developers. To conduct a more quantitative assessment of
the usability of REKALL, we ran a user study to evaluate how well
novice users of REKALL were able to author queries to detect new
events given one hour of query development time.

We recruited eight students with backgrounds ranging from med-
ical imaging to machine learning and computer architecture. Par-
ticipants received a one-hour REKALL training session, and then
were given one hour to write a query for the PARKING task, along
with a high-level English-language description of an approach sim-
ilar to the one described in Section 5. Six of the eight students were
able to successfully create a label set representing parking spaces,
and use the minus operation to subtract car detections. Although

their queries were algorithmically similar to our results, none of
the students was able to achieve comparable accuracy to our so-
lution, since they did not account for cross-class confusion (cars
being mis-classified as trucks). After modifying participant queries
to account for these failures, user queries achieved average preci-
sion scores above 94.

The average precision scores of participant queries are shown
in Table 3; the results from the original queries are shown in the
Original column.

Users 1-6 were able to successfully subtract car detections from a
label set representing parking spaces. Of those six, three (users 1-3)
had enough time remaining to further iterate by using the coalesce
operation to smooth over noise in the output of the object detector.
This increased the AP scores of their algorithms by an average of
11.5 points. User 7 developed a query computing a minus oper-
ation between proposed parking spots and car detections, but did
not correctly construct the parking spots event set; this resulted in
an AP score of 26.5. User 8 failed to use REKALL to construct the
initial parking spot label set, which was later determined to be due
to a lack of familiarity with functional programming interfaces.

After the study, we manually modified each students solution to
understand how far they were from optimal. The results from the
modified queries are shown in the Modified column. Our modifi-
cations relaxed the minus operation to subtract out more objects,
and not just the detected cars. For users 1-7, this was a single line
change (equivalent of line 8 in Figure 7). For user 7, we addition-
ally fixed the incorrect parking spot construction (equivalent of line
5 in Figure 7). After our changes, the queries written by users 1-7
all achieved AP scores greater than 94. The modified versions of
the queries written by users 1 and 2 were more accurate than our
algorithm for PARKING. This suggests that the participants were
close, and with a better understanding of computer vision failure
modes and debugging tools they could likely have achieved near-
perfect accuracy.

Success using REKALL was strongly correlated with participants’
self-rated familiarity with functional programming. Before the tu-
torial, we asked users to rate their familiarity with functional pro-
gramming on a scale of 1− 5, with 1 being “Not at all familiar”
and 5 being “Most familiar.” The self-reported scores are shown in
column FP Familiarity in Table 3.

7. RELATED WORK
Multimedia Database Systems. The idea of associating database

records with video intervals and composing queries for video search
goes back to multimedia database systems from the 90’s and early
2000’s. Systems such as OVID, MMVIS, AVIS, CVQL, and Bil-
Video aimed to provide an interface to query for complex events in
video [4, 15, 23, 31, 32, 36, 40]. The query languages for these sys-
tems supported spatiotemporal joins based on Allen interval opera-
tions [5] and included operations to express repetitions of patterns.

However, queries written in these systems lacked the starting
point of a large set of useful video annotations that modern ma-
chine learning technologies can provide. The modern machine
learning landscape now makes it possible for heuristic composi-
tion to quickly define new events. We view our efforts as adapting
early ideas about spatiotemporal composition to a modern context,
with modern primitive annotations, large video datasets, and new,
real-world video analysis tasks.

Domain-Specific Video Retrieval Systems. Our work is related
to work on domain-specific video retrieval systems, such as Sce-
neSkim or RoughCut in the film domain [34, 35, 39, 41, 49, 59–61]
or Chalkboarding in the sports domain [43, 44, 52, 53]. These sys-

10

tems take advantage of domain-specific structure to support effi-
cient video retrieval.

These approaches are largely complementary to programmatic
composition; many of them break down video streams into domain-
specific events, and allow users to query over sequences of those
events. REKALL could be used to express or model these domain-
specific events, and the broader patterns could be broken down into
a series of composition operations.

Complex Event Processing and Diverse Analytics Systems.
REKALL’s composition operations takes inspiration from complex
event processing and temporal stream analysis systems, such as
Apache Flink, SiddiQL, and Microsoft Trill [8, 16, 25]. Adapt-
ing operators from the complex event processing systems to the
video domain required support for a few language features that are
not universal among complex event processing systems. In partic-
ular, we found that a continuous interval representation instead of
a point representation was necessary to model data from different
modalities, sampled at different resolutions. Complex event pro-
cessing systems such as Apache Flink and SiddiQL are based on
point events only, so they lack many of the interval-based opera-
tions that we have found necessary for video event specification.
Trill provides a rich set of operations for analytics on data streams,
including interval-based operations and anti-semi joins, so its ex-
pressivity is similar to REKALL. The one operation that does not
appear directly is an equivalent of coalesce. It would be interest-
ing to consider how systems like Trill could be adapted for future
video event specification tasks.

Few-Shot and Zero-Shot Learning. Our approach is also re-
lated to recent efforts in few-shot and zero-shot learning [17, 24,
33, 55, 56, 62]. In fact, one way to view programmatic composi-
tion is as a mechanism for few-shot or zero-shot event detection in
video, where the query programmer uses a small number of exam-
ples to guide query development. The mechanics of the approach
to writing a REKALL query are different from most approaches to
few-shot or zero-shot learning, but some of the principles remain
the same; for instance, programmatic composition relies on infor-
mation from pre-trained networks in order to compose them into
complex events.

REKALL queries could also be used in conjunction with few-shot
learning approaches. In many of our scenarios, REKALL queries
are used for video event retrieval when there are no examples, only
an idea in a developer’s head. In these cases, initial REKALL queries
with human-in-the-loop curation could be used to source an initial
small amount of labeled data to bootstrap few-shot learning ap-
proaches.

Weak Supervision Systems. We have shown that it is possi-
ble in a number of situations to use REKALL to write queries that
accurately detect new events of interest, but it may not always be
possible to programmatically specify new events accurately enough
for all downstream applications. Weak supervision systems such as
Snorkel [45–47] and Coral [58] use statistical techniques to build
accurate models when accurate heuristics may be difficult to author.
One use of REKALL is as a mechanism for writing richer heuristics
for these weak supervision systems when they are operating over
video; in fact, we utilize weak supervision techniques in the SHOT
DETECT task to weakly supervise a model that is more accurate
than a model trained on 636× more ground-truth data than we had
access to. More work may be required to adapt weak supervision
techniques to the video domain [30]; in the future, we plan on ex-
ploring how to more deeply integrate REKALL queries into weak
supervision systems.

Video Retrieval Through Natural Language Interfaces. Some
recent works at the intersection of computer vision and natural lan-

guage processing have centered around the task of action localiza-
tion through natural language interfaces [18,22]. These approaches
aim to solve a similar problem to the video event specification prob-
lem that we consider, but the setup is slightly different; they are lim-
ited to the set of natural language descriptions found in the train-
ing/test distributions. This is fine if the events of interest are “in
distribution,” but becomes problematic for more complex events.
For example, the query “Jake Tapper interviews Bernie Sanders”
would fail unless the network were trained on a broad enough set of
queries to understand who Jake Tapper and Bernie Sanders were,
and to create an embedding for the concept of an interview. The
programmatic approach to event specification allows analysts to
encode complex concepts directly by using domain knowledge to
compose simpler concepts together.

8. DISCUSSION
REKALL is intended to give analysts a new tool for quickly spec-

ifying video events of interest using heuristic composition. Of
course, the notion of authoring code in a domain-specific query lan-
guage is not new, but adopting this approach for video analysis con-
trasts with current trends in modern machine learning, which pur-
sue advances in video event detection through end-to-end learning
from raw data (e.g. pixels, audio, text) [20]. Constructing queries
through procedural composition lets users go from an idea to a set
of video event detection results rapidly, does not incur the costs of
large-scale human annotation and model training, and allows a user
to express heuristic domain knowledge (via programming), modu-
larly build on existing labels, and more intuitively debug failure
modes.

However, compositional video event specification has many known
limits. REKALL queries still involve manual parameter tuning to
correctly set overlap or distance thresholds for a dataset. Higher-
level composition is difficult when lower-level labels do not exist
or fail in a particular context. (Our film studies efforts failed to
build a reliable kissing scene detector because off-the-shelf face
and human pose detectors failed due to occlusions present during
an embrace.) In future work we plan to pursue REKALL exten-
sions that model richer description of human behaviors or fine-
grained movements, but there will always be video events that are
less amenable to compact compositional descriptions and better ad-
dressed by learned approaches.

Nevertheless, we believe productive systems for compositional
video event specification stand to play an important role in the de-
velopment of traditional machine learning pipelines by helping en-
gineers write programs that surface a more diverse set of training
examples for better generalization, enabling search for anomalous
model outputs (feeding active learning loops), or as a source of
weak supervision to bootstrap model training. We hope that our
experiences encourage the community to explore techniques that
allow video analysis efforts to more effectively utilize human do-
main expertise and more seamlessly provide solutions that move
along a spectrum between traditional query programs and learned
models.

Acknowledgments
We thank Jared Dunnmon, Sarah Hooper, Bill Mark, Avner May, and Paroma
Varma for their valuable feedback. We gratefully acknowledge the support
of DARPA under Nos. FA87501720095 (D3M), FA86501827865 (SDH),
and FA86501827882 (ASED), NIH under No. U54EB020405 (Mobilize),
NSF under Nos. CCF1763315 (Beyond Sparsity), CCF1563078 (Volume
to Velocity), 1937301 (RTML), III-1908727 (A Query System for Rapid
Audiovisual Analysis of Large-Scale Video Collections), and III-1714647
(Extracting Data and Structure from Charts and Graphs for Analysis Reuse

11

and Indexing), ONR under No. N000141712266 (Unifying Weak Super-
vision), the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qual-
comm, Analog Devices, the Okawa Foundation, and American Family In-
surance, Google Cloud, Swiss Re, Brown Institute for Media Innovation,
Department of Defense (DoD) through the National Defense Science and
Engineering Graduate Fellowship (NDSEG) Program, and members of the
Stanford DAWN project: Teradata, Facebook, Google, Ant Financial, NEC,
SAP, VMWare, and Infosys. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, either expressed or
implied, of DARPA, NIH, ONR, or the U.S. Government.

9. REFERENCES
[1] Amazon rekognition. https://aws.amazon.com/rekognition/, 2019.
[2] Mythtv, open source dvr. https://www.mythtv.org/, 2019.
[3] Pytorch: Transfer leraning tutorial. https://pytorch.org/

tutorials/beginner/transfer learning tutorial.html, 2019.
[4] S. Adalı, K. S. Candan, S.-S. Chen, K. Erol, and V. Subrahmanian.

The advanced video information system: data structures and query
processing. Multimedia Systems, 4(4):172–186, Aug 1996.

[5] J. F. Allen. Maintaining knowledge about temporal intervals.
Communication of the ACM, pages 832–843, 1983.

[6] C. Brachmann, H. I. Chunpir, S. Gennies, B. Haller, T. Hermes,
O. Herzog, A. Jacobs, P. Kehl, A. P. Mochtarram, D. Möhlmann,
et al. Automatic generation of movie trailers using ontologies.
IMAGE-Journal of Interdisciplinary Image Science, 5:117–139,
2007.

[7] K. L. Brunick, J. E. Cutting, and D. J. E. Low-level features of film:
What they are and why we would be lost without them.
Psychocinematics: Exploring cognition at the movies, pages
133–148, 2013.

[8] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher,
J. Platt, J. Terwilliger, J. Wernsing, and R. DeLine. Trill: A
high-performance incremental query processor for diverse analytics.
VLDB - Very Large Data Bases, August 2015.

[9] A. G. Cohn, B. Bennett, J. Gooday, and N. M. Gotts. Qualitative
spatial representation and reasoning with the region connection
calculus. GeoInformatica, 1(3):275–316, 1997.

[10] J. E. Cutting. The framing of characters in popular movies. Art &
Perception, 3(2):191–212, 2015.

[11] J. E. Cutting. The evolution of pace in popular movies. Cognitive
research: principles and implications, 1(1), 2016.

[12] J. E. Cutting and K. L. Armstrong. Facial expression, size, and
clutter: Inferences from movie structure to emotion judgments and
back. Attention, Perception, & Psychophysics, 78(3):891–901, 2016.

[13] J. E. Cutting, K. L. Brunick, D. J. E., C. Iricinschi, and A. Candan.
Quicker, faster, darker: Changes in Hollywood film over 75 years.
i-Perception, 2(6):569–76, 2011.

[14] J. E. Cutting and A. Candan. Shot durations, shot classes, and the
increased pace of popular movies. Projections: The Journal for
Movies and Mind, 9(2), 2015.

[15] M. E. Dönderler, O. Ulusoy, and U. Güdükbay. Rule-based
spatiotemporal query processing for video databases. The VLDB
Journal, 13(1):86–103, Jan. 2004.

[16] E. Friedman and K. Tzoumas. Introduction to Apache Flink: Stream
Processing for Real Time and Beyond. O’Reilly Media, Inc., 1st
edition, 2016.

[17] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead, we exceed:
Labor-free video concept learning by jointly exploiting web videos
and images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 923–932, 2016.

[18] J. Gao, C. Sun, Z. Yang, and R. Nevatia. Tall: Temporal activity
localization via language query. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5267–5275,
2017.

[19] A. Geitgey. Snagging parking spaces with mask r-cnn and python:
Using deep learning to solve minor annoyances, 2019.

[20] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6546–6555, 2018.

[21] A. Hassanien, M. Elgharib, A. Selim, S.-H. Bae, M. Hefeeda, and
W. Matusik. Large-scale, fast and accurate shot boundary detection
through spatio-temporal convolutional neural networks. arXiv
preprint arXiv:1705.03281, 2017.

[22] L. A. Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell, and
B. Russell. Localizing moments in video with natural language. In
International Conference on Computer Vision (ICCV), 2017.

[23] S. Hibino and E. A. Rundensteiner. A visual query language for
identifying temporal trends in video data. In Proceedings.
International Workshop on Multi-Media Database Management
Systems, pages 74–81, Aug 1995.

[24] M. Jain, J. C. van Gemert, T. Mensink, and C. G. Snoek.
Objects2action: Classifying and localizing actions without any video
example. In Proceedings of the IEEE international conference on
computer vision, pages 4588–4596, 2015.

[25] M. Jayasinghe, A. Jayawardena, B. Rupasinghe, M. Dayarathna,
S. Perera, S. Suhothayan, and I. Perera. Continuous analytics on
graph data streams using wso2 complex event processor. In
Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, DEBS ’16, pages 301–308,
New York, NY, USA, 2016. ACM.

[26] C. S. Jensen and R. Snodgrass. Temporal specialization and
generalization. IEEE Transactions on Knowledge and Data
Engineering, 6(6):954–974, 1994.

[27] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Fast exploratory video
queries using neural networks. arXiv preprint arXiv:1805.01046,
2018.

[28] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope:
optimizing neural network queries over video at scale. Proceedings
of the VLDB Endowment, 10(11):1586–1597, 2017.

[29] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions
for debugging machine learning. In NeurIPS MLSys Workshop, 2018.

[30] S. Khattar, H. O’Day, P. Varma, J. Fries, J. Hicks, S. Delp,
H. Bronte-Stewart, and C. Ré. Multi-frame weak supervision to label
wearable sensor data. In Proceedings of the Time Series Workshop at
ICML 2019, June 2019.

[31] M. Köprülü, N. K. Cicekli, and A. Yazici. Spatio-temporal querying
in video databases. In Proceedings of the 5th International
Conference on Flexible Query Answering Systems, FQAS ’02, pages
251–262, London, UK, UK, 2002. Springer-Verlag.

[32] T. C. T. Kuo and A. L. P. Chen. A content-based query language for
video databases. In Proceedings of the Third IEEE International
Conference on Multimedia Computing and Systems, pages 209–214,
June 1996.

[33] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based
classification for zero-shot visual object categorization. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
36(3):453–465, 2013.

[34] M. Leake, A. Davis, A. Truong, and M. Agrawala. Computational
video editing for dialogue-driven scenes. ACM Trans. Graph.,
36(4):130:1–130:14, July 2017.

[35] B. Lehane, N. E. O’Connor, H. Lee, and A. F. Smeaton. Indexing of
fictional video content for event detection and summarisation. J.
Image Video Process., 2007(2):1–1, Aug. 2007.

[36] J. Z. Li, M. T. Özsu, and D. Szafron. Modeling of moving objects in
a video database. Proceedings of IEEE International Conference on
Multimedia Computing and Systems, pages 336–343, 1997.

[37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in
context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 740–755, Cham, 2014.
Springer International Publishing.

[38] F. Massa and R. Girshick. maskrcnn-benchmark: Fast, modular
reference implementation of Instance Segmentation and Object
Detection algorithms in PyTorch.
https://github.com/facebookresearch/maskrcnn-benchmark, 2018.
Accessed: July 15, 2019.

12

[39] N. Mohamad Ali, A. F. Smeaton, and H. Lee. Designing an interface
for a digital movie browsing system in the film studies domain.
International Journal of Digital Content Technology and Its
Applications, 5(9):361–370, 2011.

[40] E. Oomoto and K. Tanaka. Ovid: design and implementation of a
video-object database system. IEEE Transactions on Knowledge and
Data Engineering, 5(4):629–643, Aug 1993.

[41] A. Pavel, D. B. Goldman, B. Hartmann, and M. Agrawala.
Sceneskim: Searching and browsing movies using synchronized
captions, scripts and plot summaries. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software and Technology,
UIST ’15, pages 181–190, New York, NY, USA, 2015. ACM.

[42] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian. Scanner:
Efficient video analysis at scale. ACM Trans. Graph.,
37(4):138:1–138:13, July 2018.

[43] P. Power, J. Hobbs, H. Ruiz, X. Wei, and P. Lucey. Mythbusting
set-pieces in soccer. MIT SSAC, 2018.

[44] P. Power, H. Ruiz, X. Wei, and P. Lucey. Not all passes are created
equal: Objectively measuring the risk and reward of passes in soccer
from tracking data. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 1605–1613. ACM, 2017.

[45] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré.
Snorkel: Rapid training data creation with weak supervision. In
Proceedings of the 44th International Conference on Very Large
Data Bases (VLDB), Rio de Janeiro, Brazil, 2018.

[46] A. J. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré.
Training complex models with multi-task weak supervision. In
Proceedings of the AAAI Conference on Artificial Intelligence,
Honolulu, Hawaii, 2019.

[47] A. J. Ratner, C. M. D. Sa, S. Wu, D. Selsam, and C. Ré. Data
programming: Creating large training sets, quickly. In Proceedings of
the 29th Conference on Neural Information Processing Systems
(NIPS 2016), Barcelona, Spain, 2016.

[48] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99,
2015.

[49] R. Ronfard and T. T. Thuong. A framework for aligning and indexing
movies with their script. In Multimedia and Expo, 2003. ICME’03.
Proceedings. 2003 International Conference on, volume 1, pages
I–21. IEEE, 2003.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[51] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[52] L. Sha, P. Lucey, Y. Yue, P. Carr, C. Rohlf, and I. Matthews.
Chalkboarding: A new spatiotemporal query paradigm for sports
play retrieval. In Proceedings of the 21st International Conference on
Intelligent User Interfaces, pages 336–347. ACM, 2016.

[53] L. Sha, P. Lucey, S. Zheng, T. Kim, Y. Yue, and S. Sridharan.
Fine-grained retrieval of sports plays using tree-based alignment of
trajectories. arXiv preprint arXiv:1710.02255, 2017.

[54] J. R. Smith, D. Joshi, B. Huet, W. Hsu, and J. Cota. Harnessing ai for
augmenting creativity: Application to movie trailer creation. In
Proceedings of the 25th ACM international conference on
Multimedia, pages 1799–1808. ACM, 2017.

[55] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for
few-shot learning. In Advances in Neural Information Processing
Systems, pages 4077–4087, 2017.

[56] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning
through cross-modal transfer. In Advances in neural information
processing systems, pages 935–943, 2013.

[57] S. Tang, L. Feng, Z. Kuang, Y. Chen, and W. Zhang. Fast video shot
transition localization with deep structured models. In Proceedings of
the Asian Conference on Computer Vision (ACCV), 2018.

[58] P. Varma, B. D. He, P. Bajaj, N. Khandwala, I. Banerjee, D. Rubin,
and C. Ré. Inferring generative model structure with static analysis.
In Advances in neural information processing systems, pages
240–250, 2017.

[59] H.-Y. Wu and M. Christie. Analysing cinematography with
embedded constrained patterns. In Proceedings of the Eurographics
Workshop on Intelligent Cinematography and Editing, WICED ’16,
pages 31–38, Goslar Germany, Germany, 2016. Eurographics
Association.

[60] H.-Y. Wu, Q. Galvane, C. Lino, and M. Christie. Analyzing Elements
of Style in Annotated Film Clips. In WICED 2017 - Eurographics
Workshop on Intelligent Cinematography and Editing, pages 29–35,
Lyon, France, Apr. 2017. The Eurographics Association.

[61] H.-Y. Wu, F. Palù, R. Ranon, and M. Christie. Thinking like a
director: Film editing patterns for virtual cinematographic
storytelling. ACM Trans. Multimedia Comput. Commun. Appl, 23,
2018.

[62] H. Yang, X. He, and F. Porikli. One-shot action localization by
learning sequence matching network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
1450–1459, 2018.

[63] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE
Signal Processing Letters, 23(10):1499–1503, 2016.

13

10. APPENDIX
10.1 Supplemental Videos

We provide eight supplementary videos on our paper website (http:
//www.danfu.org/projects/rekall-tech-report/):

• Film trailer for Star Wars: Episode III - Revenge of the Sith. We
used REKALL queries to mine for clips matching eleven different
film idioms, based on a viral video “How To Make a Blockbuster
Movie Trailer.” We manually selected a few and edited them together
into a trailer according to a template.

• Video montage of TV News interviews. We used our interview query
to find interview clips with the 2016 presidential candidates. We
randomly sampled 64 clips from the results and edited them into a
video montage.

• Supercut of reaction shots from Apollo 13. We wrote a query to find
reaction shots – shots where the character onscreen is shown reacting
to another (offscreen) character’s dialogue. We ran the query on
Apollo 13 and put together a supercut of all the results.

• Supercut of action sequences. We wrote a query to find action se-
quences, and put together a supercut of a sample of the results.

• Supercut of “May The Force Be With You.” We wrote a query to find
all the times when the phrase “May The Force Be With You” is said
in the Star Wars films, and put together a supercut of all the results.

• Supercut of Hermione between Ron and Harry. We wrote a query
to find the spatial pattern of Hermione Granger between Ron and
Harry in the Harry Potter series, and put together a supercut of all
the results.

• Film idiom: Intensification. We wrote a query to find instances of
the “intensification” film idiom – where the shot scale gets mono-
tonically larger on one or both characters throughout the course of a
conversation. We selected one instance from the result set to show
(from the movie Spellbound).

• Film idiom: Star Wide. We wrote a query to find instances of the
“start wide” film editing idiom – where the first shot in a conversa-
tion shows all the characters in the conversation. We selected one
instance from the result set to show (from the movie Interstellar).

10.2 Additional Task Details
In this section, we provide additional code listings and details for the

COMMERCIAL, SHOT DETECT, CONVERSATION, and FILM IDIOM tasks
discussed in Section 5.

10.2.1 Commercial Detection
A code listing for the COMMERCIAL query is shown in Figure 9. In our

dataset, commercials are delineated by sequences of black frames. They
often have mixed-case or missing transcripts, while the transcripts of non-
commercial segments typically contain upper case text and distinct speaker
markers (>>). The commercial detection query takes advantage of these
dataset-specific heuristics to partition the video by sequences of black frames
(lines 9-14), filter out segments that intersect with speaker markers (lines 16-
22), and add in segments where the transcripts are mixed-case or missing
(lines 28-40). The filter_against join, used in line 16, performs a left
outer join and keeps any label from the left set that passes the predicate
with any label from the right set. This query also makes heavy use of the
coalesce function to connect sequences of labels that are temporally dis-
connected.

10.2.2 Shot Transition Detection
A code listing for the SHOT DETECT query is shown in Figure 10. This

query uses color histograms of each frame to find sudden changes in the
frame content. It computes the differences between histograms of neigh-
boring frames and finds sudden spikes in the differences by computing the
average and standard deviation of the change over a large window of frames.
The query further reduces false positives by using the positions of face de-
tections at the beginning and end of each shot transition; in short, if the
query finds the same number of faces in the same positions at the beginning
and end of a shot transition, it removes the transition as a false positive.

Lines 4-12 compute differences between the histograms in neighboring
pairs of frames. Lines 14-28 construct a sliding window over the entire film,
and compute the average and standard deviation of between-frame changes

1 # Commercial Query
2 transcript_words = rekall.ingest(transcript, 1D)
3 histograms = rekall.ingest(database.table("hists"), 1D)
4 entire_video = rekall.ingest(database.table("video"), 3D)
5

6 transcripts_with_arrows = transcript_words
7 .filter(λ word: '>>' in word)
8

9 black_frame_segs = histograms
10 .filter(λ i: i.histogram.avg() < 0.01)
11 .coalesce(predicate = time_gap < 0.1s, merge = time_span)
12 .filter(λ i: i["t2"] - i["t1"] > 0.5s)
13

14 candidate_segs = entire_video.minus(black_frame_seqs)
15

16 non_commercial_segs = candidate_segs
17 .filter_against(
18 transcripts_with_arrows,
19 predicate = time_overlaps)
20

21 commercial_segs = entire_video
22 .minus(non_commercial_segs.union(black_frame_segs))
23

24 commercials = commercial_segs
25 .coalesce(predicate = time_overlaps, merge = time_span)
26 .filter(λ i: i["t2"] - i["t1"] > 10s)
27

28 lower_case_word_segs = transcript_words
29 .filter(λ word: word.is_lowercase())
30 .coalesce(predicate = time_gap < 5s, merge = time_span)
31

32 missing_transcript = entire_video
33 .minus(transcript_words)
34 .filter(λ i: 30 < i["t2"] - i["t1"] < 270)
35

36 commercials = commercials
37 .union(lower_case_word_segs)
38 .union(missing_transcript)
39 .coalesce(predicate = time_gap < 45s, merge = time_span)
40 .filter(λ comm: comm["t2"] - comm["t1"] < 300s)

Figure 9: A Rekall query to retrieve commercials in a video collec-
tion of TV News broadcasts.

for each window. Lines 30-35 isolate frame pairs where the change in frame
histogram is at least 2.5 standard deviations greater than the average change
in the entire window, and remove transitions that are within 10 frames of any
other transitions. Lines 41-53 associate faces with the beginning and end of
each transition, and lines 55-59 use the custom faces_match predicate to
detect transitions where the faces at the beginning and end of each transition
are in the same place (just comparing the count and position of the nested
face detections). Finally, line 63 removes the bad transitions from the pool.

For sake of exposition, we have presented this query as detecting shot
transitions in a film (i.e., the frame(s) at which a shot changes). This is
how we evaluate the accuracy of a shot detector (how many of the detected
transitions represent true transitions), but we store shot information in terms
of continuous shots (i.e., we store a single label for each contiguous shot,
instead of a label for each shot transition). The conversion is simple; a
minus operation can partition a film into contiguous shots to be stored for
future use (such as for the SHOT SCALE or CONVERSATION queries).

10.2.3 Conversation Detection
A code listing for the CONVERSATION query is shown in Figure 11. This

query makes heavy use of a simple heuristic for detecting conversations –
shots of the same people appearing multiple times in a contiguous film seg-
ment. In our dataset, caption data was difficult to obtain (manual search-
ing and scraping repository websites), and was often unreliable (missing or
badly mis-aligned with the video files). As a result, we decided to write
our query entirely from visual content. Since films are highly stylized, we
couldn’t rely on off-the-shelf identity recognition (which may have failed
on minor characters). Instead, we used distance in face embedding space as

14

http://www.danfu.org/projects/rekall-tech-report/
http://www.danfu.org/projects/rekall-tech-report/

1 # Shot Query
2 histograms = rekall.ingest(database.table("hists"), 1D)
3

4 hist_pairs = histograms
5 .join(
6 histograms,
7 predicate = after(1 frame),
8 merge = time_span)
9

10 hist_diffs = hist_pairs
11 .map(λ pair: pair.first
12 with payload = diff(pair.first, pair.second))
13

14 windows = hist_diffs
15 .join(
16 hist_diffs,
17 predicate = before or after 500 frames,
18 merge = λ a, b: a with payload = [b])
19 .coalesce(
20 predicate = time_equal,
21 merge = λ a, b:
22 a with payload = a.payload + b.payload)
23 .map(λ window:
24 window with payload = {
25 diff: window.interval.diff,
26 avg: mean(window.payload),
27 stddev: stddev(window.payload)
28 })
29

30 transitions = windows
31 .filter(λ i: i.diff > 2.5 * i.stddev + i.avg)
32 .coalesce(
33 predicate = time_gap < 10 frames,
34 merge = time_span)
35 .map(λ t: t with t["t2"] = t["t1"] + 1 frame)
36

37 faces = rekall.ingest(database.table("faces"), 3D)
38

39 faces_by_frame = faces.group_by(λ face: face["t1"])
40

41 transitions_starting_faces = transitions
42 .join(
43 faces,
44 predicate = start_time_equal,
45 merge = λ transition, faces:
46 transitions with payload = faces)
47

48 transitions_ending_faces = transitions
49 .join(
50 faces,
51 predicate = end_time_equal,
52 merge = λ transition, faces:
53 transitions with payload = faces)
54

55 bad_transitions = transitions_starting_faces
56 .join(
57 transitions_ending_faces,
58 predicate = time_equal and faces_match,
59 merge = λ t1, t2: t1)
60

61 transitions = transitions.minus(bad_transitions)

Figure 10: A Rekall query to detect shot transitions in film.

a simple proxy for whether two detected faces belonged to the same char-
acter or not.

The query starts by loading up face detections and embeddings from
off-the-shelf face detection and embedding networks [51, 63], and con-
tiguous shots output by the SHOT DETECT query (lines 2-3). It then clus-
ters the faces in a single query by the face embeddings, using the custom
custom_faces map function, which just uses K-means clustering with K
equal to the maximum number of faces in a single frame in the shot (lines 5-

1 # Conversation Query
2 faces = rekall.ingest(database.table("faces"), 3D)
3 shots = rekall.ingest(database.table("shots"), 1D)
4

5 faces_by_frame = faces.group_by(λ face: face["t1"])
6 shots_with_face_clusters = shots
7 .join(
8 faces_by_frame,
9 predicate = time_overlaps,

10 merge = span)
11 .group_by(λ shot: (shot["t1"], shot["t2"]))
12 .map(λ shot:
13 shot with shot.payload = cluster_faces(shot.faces))
14

15 shot_pairs = shots_with_face_clusters
16 .join(
17 shots_with_face_clusters,
18 predicate = λ s1, s2: s1["t2"] == s1["t1"],
19 merge = span)
20

21 shot_pair_sequences = shot_pairs
22 .coalesce(
23 predicate = time_overlaps and
24 λ shot_pair1, shot_pair2:
25 True if ∃ tup1 ∈ shot_pair1.id_pairs,
26 tup2 ∈ shot_pair2.id_pairs |
27 (dist(tup1[0], tup2[0]) < THRESHOLD and
28 dist(tup1[0], tup2[0]) < THRESHOLD) or
29 (dist(tup1[0], tup2[1]) < THRESHOLD and
30 dist(tup1[1], tup2[0]) < THRESHOLD),
31 merge = span
32)
33

34 adjacent_sequences = shot_pair_sequences
35 .join(
36 shot_pair_sequences,
37 predicate = after one frame and
38 λ shot_pairs1, shot_pairs2:
39 true if ∃ tup1 ∈ shot_pairs1.id_pairs,
40 tup2 ∈ shot_pairs2.id_pairs |
41 (dist(tup1[0], tup2[0]) < THRESHOLD and
42 dist(tup1[0], tup2[0]) < THRESHOLD) or
43 (dist(tup1[0], tup2[1]) < THRESHOLD and
44 dist(tup1[1], tup2[0]) < THRESHOLD),
45 merge = span)
46

47 conversations = shot_pair_sequences
48 .union(adjacent_sequences)
49 .filter(num_shots >= 3)
50 .coalesce(predicate = time_overlaps, merge = span)

Figure 11: A Rekall query to detect conversations in film.

13). Next, the query constructs pairs of neighboring shots (lines 15-19),
and uses the coalesce function to construct sequences of shot pairs where
the same people appear throughout the sequence, expressed by a custom
predicate function (lines 21-32). Finally, the query joins together neigh-
boring sequences, eliminates any sequences that are fewer than three shots
long – i.e., the ones that are still shot pairs after the sequence construction
(lines 47-50).

Conversation detection algorithm in Figure 11. English-language de-
scription of the steps here.

10.2.4 Film Idiom Mining
In this section, we present a full list of film idioms we mined for (in-

cluding for the film trailer and supplementary videos), and give a brief de-
scription of the REKALL queries used to mine for these idioms. Many of
these queries operate solely on face or object detections and transcript data,
although a few also utilize identity information for main characters or the
main villain. Before starting the mining process for the movie, we cluster
the faces in a movie based on the face embeddings to quickly label all the
main characters and the main villains in the movie – a process which took

15

less than ten minutes per movie on average.
The film trailer template contained a total of six different film idioms that

we mined for:

• Establishing shot – query searched for shots with no people or ob-
jects

• Ponderous statement or question – query searched the transcript for
phrases like “what if?”

• Action sequences – query searched for sequences of multiple short
shots in a row

• Dark tidings – query searched for sequences where the main villain
was shown on screen along with some text in the transcript

• Hero shots – query searched for shots where a main character was
displayed alone in a medium shot or close up, and the brightness of
the frame was high (manually-set threshold)

• Shots of main characters looking hopeful – query was the same as the
hero shots query, except allowing multiple characters in the frame

The trailer template contained a few other items as well, but we found that
we could re-use existing queries for these. For example, the trailer template
contains “statement of causality or finality from the main villain” as well as
“dark tidings from the main villain,” but we were able to use the same dark
tidings query for both.

10.3 Weak Supervision
In Section 6.1, we briefly discussed using REKALL queries as a source of

weak supervision to train a model on a large collection of unlabeled data for
the SHOT DETECT task. In this section, we discuss this approach in more
detail.

The REKALL algorithm for the SHOT DETECT task was developed on a
relatively small selection of data (half of 45 minutes of ground truth data
that we collected), since collecting ground truth shot transition labels is ex-
pensive (labelers need to inspect every frame in a sequence to find the frame
where a shot transition takes place). However, we had access to a much
larger collection of unlabeled data – 589 feature-length films. We wanted
to use the signal in the unlabeled data to improve over the performance of
our REKALL query.

We turned to open-source weak supervision techniques in the academic
literature such as Snorkel [45–47]. These techniques provide a mechanism
to label a large collection of unlabelled data by using statistical methods to
estimate the accuracies of different labeling functions. A labeling function
is a function – any piece of code – that can label a data point. Weak supervi-
sion systems like Snorkel use the observed agreements and disagreements
between labeling functions on unlabelled data to estimate the underlying
accuracies of the labeling functions. The accuracies and labeling function
outputs can then be used to output probabilistic labels over the unlabelled
data, which can be used to train an end model using standard training tech-
niques. To summarize, these weak supervision systems use multiple noisy
user-defined labeling functions to generate probabilistic training labels for
a collection of unlabelled data.

In order to apply these techniques to the SHOT DETECT task, we needed
to turn our single query into multiple labeling function. The SHOT DETECT
query can be viewed as a labeling function, but there is no way for weak
supervision systems to observe agreements and disagreements between la-
beling functions if there is only a single labeling function.

To overcome this challenge, we broke the SHOT DETECT query into five
different labeling functions – three that looked at changes in histograms
between frames, and two that looked at the number and position of faces
between frames. The three labeling functions that looked at changes in
histograms between frames were all equivalent to lines 2-35 in Figure 10,
but used different histograms as input – one used RGB histograms, one
used HSV histograms, and one used optical flow histograms. The two face
detection labeling functions, meanwhile, distilled the domain knowledge
from lines 41-59 in Figure 10 and voted that there was no shot transition
if they detected the same number of faces, or faces in the same position,
respectively, across a series of frames. These labeling functions were all
written in REKALL and generated noisy labels for the entire film dataset.

Once we generated these noisy labels, we used the weak supervision
techniques in the Snorkel system [45] to learn the accuracies of the five
labeling functions from their agreements and disagreements and generate
probabilistic labels over the full unlabelled dataset. We then used these
labels to train a shot detector, which achieved an F1 score of 91.3 on the
held-out test set – matching the performance of another shot detector trained

on a collection of gold ground-truth data 636× larger than our ground-truth
dataset.

16

	Introduction
	An Analysis Example
	Spatiotemporal Labels
	Composing Labels
	Label Sets
	Coalesce: Recursive Label Merging
	Joins

	Applications
	Analysis of Cable TV News Media
	Film Cinematography Studies
	Static-Camera Vehicular Video Streams
	Mining Autonomous Vehicle Logs
	Model Debugging

	Evaluation
	Query Accuracy
	Classification Tasks
	Object Detection Tasks
	Query Performance

	Usability

	Related Work
	Discussion
	References
	Appendix
	Supplemental Videos
	Additional Task Details
	Commercial Detection
	Shot Transition Detection
	Conversation Detection
	Film Idiom Mining

	Weak Supervision

